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Synops i s  

By a careful topological examination of certain aspects of measurement 
processes, one reaches the unorthodox conclusion that it is not legitimate to 
assume that three-space is metrisable throughout the universe. The examina- 
tion consists of an identification of the role of the separation axioms in the 
conventional mathematical formulation of the information we extract from 
actual measurements. To provide a means of handling the limitations intro- 
duced by errors of measurement, a species of local structure is proposed that is 
a particular example of a Zeeman tolerance space. Some homology properties 
relating to the way in which measurements containing errors are adjoined are 
deduced for spaces possessing the proposed structure, and some simple pro- 
perties of transformations of such spaces are given. 

1. Introduct ion 

1.1. Rdsumd 

I t  is of interest to the mathemat ic ian  to discover if one can formulate  
dynamics  in terms tha t  completely discard the not ion of metrisation. 
The implication of  such a proposal is t ha t  an algebraic approach  must  
be sought,  as opposed to a global differential geometric approach.  

I t  is of interest to the physicist  to  seek formulat ions of d3mamies 
and  of the not ion of  causali ty t ha t  are free from metrisation, for, as 
Section 4 leads one to unders tand,  it is not  legitimate to assume tha t  
even ord inary  three-space is metrisable th roughou t  its entirety.  There 
is also the hope tha t  such an approach  m a y  help to th row some light 
upon  difficulties now being encountered in the unders tanding of sub- 
nuclear  and cosmological problems. 

The first principal section of this paper  investigates the roles of tile 
separat ion axioms in physical  spaces, an invest igat ion tha t  is carried 
out  carefully in order to expose as m a n y  mat te rs  as possible tha t  p lay  
a critical par t  in assessing the applicabili ty of  various kinds of topo- 
logical spaces one m a y  hope to be significant in physics. The outcome 

$ This work was undertaken and completed whilst the author was at the 
Post Office ]:~esearch Station, Dollis Hill, London, N.W.2. 
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of the investigation is the discovery that  one is left with much weaker 
topological properties than is usually assumed for spaces--nothing 
stronger than locally compact Hausdorffness may be assumed. 

The second section provides a similar study of the topological 
properties of 'measurement processes' (defined in the first section), 
and 'dynamical processes', enabling one to infer a topology for the 
'space of physical conditions' (a notion also coined in the first section). 

The third section uses the deductions of the previous two sections 
in conjunction with Smirnov's general metrisation theorem, demon- 
strating that  even if a space of measurements is locally metrisable, 
one may not assume tha t  it is metrisable throughout its entirety. 

I t  is found that  the plain fact of finite, non-zero errors in measure- 
ments introduces some inherent difficulties into the discussion about 
topological properties of transformations between events t h a t  are 
labelled by the values of measurements. To avoid those difficulties, a 
species of local structure (in the sense of Ehresmann) is proposed. This 
structure, named a 'Planted Structure', incorporates the notion of 
error in such a way that  errors are ignored; this is accomplished by 
constructing a space modulo error. 

The fourth section contains firstly, the definition of the local 
structure, secondly a deduction of some of its basic topological 
properties, and finally presents some simple properties of transforma- 
tions between such structures. The fifth section is concerned with 
some of the problems in section four that  pertain to the homology of 
planted structures. 

1.2. Retrospect and Prospect 
There is only one book devoted to an essentially topological 

examination of dynamics (Gottschalk & ttedlund, 1954), a work based 
upon the hypothesis that  dynamical transformations belong to a topo- 
logical group, t Contrasted with that,  the approach used here is much 
more physically intuitive. Here the purpose is to look very carefully 
at the tacit connotations and implications contained in the customary 
use of the term 'measurement process', and to find out exactly how to 
give expression to those connotations and implications by means of 
topological notions. This task does not appear to have been at tempted 
before. That the effort is worthwhile becomes obvious, owing to the 

Since the time of writing this paper there has appeared a book on the 
modern approach to classical mechanics in global language. (See Abraham 
(1967).) That exposition is certainly coordinate-free, but not in the sense 
introduced by the merely relational approach to dynamics that is developed 
in the later parts of this work. 
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unexpected conclusions that  are drawn, e.g. Section 4.4, RMK(20), 
PLY(5), and Section 6.3, RMK(32). 

This paper is essentially incomplete, because it suggests many 
further basic studies that  may raise some insoluble problems. How- 
ever, it will be seen in the second paper in this series ('On Causal 
Dynamics Without Metrisation: II ') that  there is a realisation of a 
dynamical process satisfying a metric-free condition for causality of 
dynamical processes, that  consists of the familiar paraphernalia of 
Minkowski space-time, but donated with Zeeman's 'fine topology'. 

1.3. Notations 
In  order that the presentation may be clearer, a system of abbrevia- 

tions has been introduced to enable the reader to learn the importance 
attached to various statements. The abbreviations are as follows : 

ASS( ) Answer ASSN( ) Assumption 
AX( ) Axiom COR( ) Corollary 
CVN( ) Convention DF( ) Definition 
EQN( ) Equation EX( ) Example 
I-IYP( ) Hypothesis IFOF If  and only if 
LMA( ) Lemma PR( ) Proposition 
QU( ) Question I~MK( ) Remark 
TH( ) Theorem ] Q.E.D. 

A double bracketing, e.g. LMA((1066)), indicates an alternative, 
but seldom cited, form of the abbreviation tabulated by single 
brackets. Some double compositions of abbreviations are used as well, 
e.g. I~MK/DF(1216), in which ease the number always refers to the 
indexing set of the first abbreviation, which, therefore, is considered 
to denote the more appropriate interpretation of the labelled state- 
ment. 

2. The Separation Axioms in Physical Spaces 

2. i. Motivation 
Probably the first physical space which comes to the mind of the 

reader is (3 § 1)-dimensional space-time, for it is used to describe the 
locations of objects and events directly involved in his everyday life. 
There are, of course, many others constructed on a more mathematical 
footing (e.g. momentum-energy space and angular momentum-spin 
space), but  the more immediately apprehendable space-time of (3 + 1) 
dimensions is of best use for the relatively simple discussion which 
follows. 

A common feature of the way in which quantities or entities are 
measured is that  different devices are used for different ranges of 
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'sizes'. This is a direct result of the different ways of obtaining accurate 
measurements (i.e. those methods of measurement with very small 
errors) which are forced upon one in the different cases to hand. For 
example, to measure the size of a sheet of letter paper one would use 
a foot rule, to measure its thickness a micrometer, whilst to measure 
the length of a roll of wallpaper one would use a very long, flexible, 
tape-measure. Similar contrasts can be made with time-pieces as the 
reader wishes. The critical point of argument is that  whenever an 
extensive scale of measurement is brought into use in physics, the 
whole range of values can in general be compassed by several pieces of 
apparatus only: this is certainly true when standards are compared 
with devices being calibrated. Therefore, although the notion of 
'length', for example, is one with which each one of us feels quite 
familiar when speaking of inter-atomic, macroscopic or interstellar 
distances, the familiarity and understanding we possess (which is so 
often thought of as almost intuitive), arises only from the existence 
of a number of very well related measuring techniques. I t  is this 
multiplicity of measurement processes which prompts the following 
DF(1 and 2), as well as something of the examination of the advance 
of the so-called 'Separation Axioms' in the study of physical spaces. 

2.2. Measurement Processes 
Without restricting ourselves to any particular example of a 

measurement, we shall proceed to give as general a definition of a 
measurement process as possible. To begin with we need a set of 
physical 'conditions' C. t I f  we consider C to contain all possible 
conditions which can be measured, and is thereby ascertained to 
possess 'values' of a particular physical property to which the measur- 
ing devices are sensitive, then we know tha t  more than one device will 
have to be used. Consequently, each device will have a different 
'domain' of applicability. We therefore must assume that  C can be 
subdivided into a collection of subsets, {Ci}, which can be ordered into 
a sequence--by the subscr ipt / - -which corresponds to the ordering 
of the measuring devices into a sequence. There is, of course, a natural 
sequence. In most cases, it is given by the absolute magnitudes of the 

t The  word  cond i t ion  is used  in preference  to  t he  more  well def ined a n d  
current notion of 'state', so that at a later stage one may be free to introduce a 
more precise notion which can be called a 'state' ; moreover, the word 'condi- 
tion' leaves us free to suppose that even though a particular state may be under 
observation (that is to say, the subject of the measuring process) there may also 
be some special circumstances under which the measuring apparatus is being 
used. For example, a very cold micrometer may be used to measure the diameter 
of a very hot rod, circumstances which clearly necessitate accounting for. 
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ranges of numerical  values which the measuring devices produce as a 
result of their  operation. W h a t  is more, if  we are to be able to assume 
tha t ,  given the natura l  sequence of the Ci, measurements  upon 
adjacent  C[s are related in a sufficient degree to allow comparison of 
measurements,  then  it is necessary to assume tha t  adjacent  Ci's are 
not  disjoint. 

The second and thi rd  of the three mathemat ica l  devices we need for 
this s tudy  of measurement  processes, are a set of mappings corre- 
sponding to a set of measuring devices, and a parameter  space in 
which values of the measurements  are written. We m a y  note t ha t  the 
measuring devices m a y  be labelled by  the same i's as the C[s, and the 
subspaces of the parameter  space in the same way too. Before we give 
any  definition, there is one more point to consider--namely tha t  a 
measurement  of one part icular  proper ty  m a y  not  uniquely define a 
physical condition (or state). For  example, the energy of an electron 
in a hydrogen a tom m a y  have a fixed value for several different values 
of the n, l, m, j ,  quan tum numbers. I f  we can assert with certainty,  
for the purposes of a part icular  class of phenomena,  t ha t  there is a 
unique physical condition corresponding to each measured value of 
a certain property,  it  is natura l  to call the measurement  (process) a 
'simple' one. The definition of a measurement  process may  now be given. 

NTN(1)  : Jm is the set of all integers modulo m. In  particular J ~  is 
the set of all integers, and J(+), J(g) the sets of all positive and 
negative integers respectively, taking 0 e J~) ,  i.e. J~ )  A J~ )  = r 
where r is the empty  set. 

DF(1) : Let  I c J ~  be discrete and have finite cardinality. Given a set 
of measuring devices P = {P~}, i e I ,  a set of physical conditions 
C possessing a collection of subsets {Ci} , i ~ i ,  and a space of 
parameters  F,  then  to each part icular  measuring device Pi there 
is associated a mapping pi called a measurement sub-process when- 
ever the following conditions are satisfied: 

Condition expressing 
! the possibility of 

CDN(1) ." pi(C~) c F~ c F I measurement  
CDN(1):  (O~ N Ci•  O (C i N Ci• • r comparisons, and in 
CD2g(3) : QJi ~x Ci = C JI which Cj denotes the 

I 
I closure of Cj k 

DF(2) : The mapping p ~ i  ~sPi induced by P is called a measurement 
process. 

R M K ( 1 ) :  Therefore a measurement  process is basically a ]?re-sheaf 
over C with values in the elements of ~-  = {Fii ~ I}. 
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Before defining simplicity for processes [see Section 3.2, DF(10)], 
we need to examine the topological implications of errors in measure- 
ment. I t  cannot be circumvented by any means that  errors are part 
and parcel of our perception, although they may be so small as to 
produce only an insignificant modification of the relationships we 
perceive as a result of our measurement operations, therefore any 
serious topological s tudy of any notions in physics must take them 
into account. I t  will now be shown that  the presence of errors directly 
brings to us consideration of the so-called Separation Axioms. 

2.3. The Notion of Topological Spaces 
The actual intent of a measurement--at  least as far as the theorist 

is concerned--is to obtain a precise number which may be substituted 
into an equation, so that,  by whatever particular condition of appraisal 
the equation may represent, either a judgement upon the validity of a 
theory may be made or else some other useful quanti ty may be 
calculated. Although the intent is to obtain a precise value from the 
measurement, we know well enough that  in actual practice it is 
impossible to obtain comp]ete elimination of error from any form of 
measurement. I t  certainly may be possible to reduce the fractional 
error in a measurement to such a low level tha t  for all practical pur- 
poses it may be discounted and ignored, but from the topological 
aspect this is not true. The reason for this latter statement becomes 
more apparent by considering the definitions for a topological space 
and a limit point. 

Let us suppose tha t  in the space of parameters F, the point a ~ F 
represents the actual value of a quanti ty being measured. The 
measuring device--supposing that  it is accurate--will register a 
value very close to a, but because of its inherent error the actual 
value recorded, a' say, will fall within certain limits about a; let us 
denote the collection of all possible a' by O(a). Of course it is always 
possible that  the precise value a will in actual fact be registered by 
the measuring device--i.e, a ~ O(a)--but it is quite plain that  if it is 
known that  the measuring device has a certain inherent error, then it 
is impossible to make any precise statement about the actual value 
of the property (being measured) of the physical condition. So the most 
which can be said, is that  the measuring device will register a value 
which lies within a certain neighbourhood of the 'true' value ; that  is 
to say the 'true' value is that  which would be registered if the measur- 
ing device registered completely unambiguous values. 

Now, although the last sentence can be considered to convey the 
truth, it does so, as it were, by using false principles. The 'real' t ruth  
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- - t o  p lay  with words- - i s  t ha t  the value of the p rope r ty  of the physical  
condit ion lies within a neighbourhood,  contained in F, ' centred '  on 
the  value registered by  the measuring device ; t h a t  is to say one should 
consider the  expression a ~ O(a') ra the r  t han  a' ~ O(a). The reason is 
simple to  unders tand :  it  is t ha t  one can never  assert~ the result  of a 
par t icu lar  measurement ;  knowledge gained from measurement  opera- 
t ions is always essentially a posteriori in nature .  (This is, of  course, in 
the sense t ha t  if one uses a measuring device with an error  charac- 
terised by  ~, t hen  one cannot  say t ha t  it  will produce a registered 
value with error  less t han  ~.) A fur ther  u n t r u t h  contained in the 
sentence in quest ion is the implicat ion tha t  the value of the p rope r ty  
(being measured) of  the physical  condit ion belongs to the condit ion as 
some kind of Esau 's  b less ing-- in  fact  anyone who in recent  t imes 
d isputed such an assumption was t r ea ted  like a potent ia l  J a c o b - -  
whereas, the  value is no more t han  a convenient  label assigned to 
the condition, in order  t ha t  certain invar iant  relationships be tween 
the  condit ion itself and other  conditions (with different values of the 
proper ty)  m a y  be classified in a manner  acceptable to our senses of 
pereeption.:~ 

I t  is clear f rom this discussion t ha t  the most  fundamenta l  entit ies 
t h a t  are useful f rom the topological viewpoint ,  are the neighbourhoods 
lying in the space F of parameters  ; there  neighbourhoods are inferred 
to exist  by  vi r tue  of  the  ac t iv i ty  of making measurements .  I t  is t rue  
tha t  one can always assume the existence of points in F,  bu t  t h ey  must  
be considered to  exist  only in the sense of some limiting process: 
namely,  t ha t  i f F  is covered by  a set of  neighbourhoods of 'd iameter '  
- - w h e r e  z is a measure of the error  of the measurement  p rocess - - then  
points are yielded by  the measurement  process in the limit ~ -+ 0. 
This limit corresponds to  the  t ransi t ion f rom the pre-sheaf  s t ruc ture  
to  the  limiting sheaf  s t ruc ture  of the measurement  process. 

R M K ( 2 ) :  In  pract ice it  is impossible to reduce errors in a measuring 
process to zero, therefore  one must  always say t h a t  a measuring 
process maps a physical  condit ion into a neighbourhood of the space 
of parameters  used to  eharacterise the measurements '  values. 

R M K ( 3 )  : I t  is also quite clear t ha t  if the measuring process is carried 
out  upon every  possible different physical condition, t hen  a set of 

t The word 'assert' is used here not in the sense of 'predict', but in the sense 
of making an a priori true statement. 

If the reader is unfamiliar with Professor David Bohm's masterly analysis 
of perception and its relation to the physical sciences, he would be well advised 
to acquaint himself with it. See the appendix to The Special Theory of Relativity 
(Benjamin, 1965). 
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neighbourhoods, say (P = {Oi}, will be generated which will cover that  
part  of F (the parameter space of measurement values) which is 
accessible by means of that  particular measurement process; let us 
denote this subset of F by f ' .  In terms of the symbols introduced in 
DF(I and 2) this becomes: 

p(C) ~ U~Oi= F' ~_ F 

RMK(4): Notice, furthermore, that  the set of neighbourhoods, 
0 = {0~}, must be denumerable by reason of the eardinality of each 
0 i being greater than unity, which is to say: (i) no neighbourhood can 
consist of a single, precisely valued point; (ii) in order for two measure- 
ment values to be unambiguous, the neighbourhoods they generate 
must be disjoint. The consequence of these two requirements is that  a 
(discrete) tabulation of distinct measurement values is brought about 
whenever an extended set of measurements is made by either an 
individual, or produced by a continuously operating, automatic 
'monitoring' device. In the former case, (r is countable, de rigeur-- 
unless one counts a schizophrenic physicist as a non-rational person 
--and in the second case by reason of a modulo non-zero-error 
argument. 

Having now introduced some sort of covering for F,  we must go a 
little further and examine the physical significance of the notion of a 
limit point before any (mathematically) sensible discussion of the 
notion of a topological space can be entered upon. 

2.r Limit Points 

Now it is clear that  if one wishes to be certain that  a measured value 
relating to a particular physical condition is a value with some 
significance , the measurement process will be applied several times to 
the condition (which we must assume to be prepared each time so 
that  is is specified by some criteria). In the case of statistically con- 
trolled responses to the measurement process, a very large number of 
measurement values indeed must be obtained, in order to establish 
that  a certain statistical pattern of values is repeatedly obtained. 
Only under these strictures can one begin confdently to assert that  a 
definite (i.e. particular) physical condition is being recorded by means 
of the measuring process. This necessity for repeated confirmation is 
an essential ingredient of the nature of Physics, considering Physics as 
a formal s tudy pursued by a collection of people : these matters are 
considered in the second paper in the series, Section 2.5, ASSN(10), 
where it is stressed that  repeated confirmation of an experience, by 
any participant in Physics, is the most important characteristic of the 
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s tudy  one can find. Consequently,  one must  consider any  physical  
condit ion as being associated wi th  a number  of (the minimal) neigh- 
bourhoods  in the  pa ramete r  space of measurement  values, if  one 
wishes to express the postula te  t ha t  Physics  is essentially a corporate  
s tudy.  I t  is just  this na tura l  need for a mult ipl ic i ty  of such neighbour-  
hoods which offers a na tura l  way  of discussing limit points,  and we 
m a y  do so in the  following way. 

Suppose t h a t  a par t icular  physical  condit ion c (specifiable b y  a set 
of criteria which we do not  need to know for the purposes of this 
discussion), which, mapped  by  a measuring process p into the para-  
meter  space F,  gives rise to a set of measurement  values {ai} together  
with the set of corresponding neighbourhoods in F,  denoted  by  
{O(a~)}. In  symbols this is: 

p~(c)  c O~(a!~)) (i = 1, 2 . . . . .  n )  

where n is equal to the number  of measuring operat ions performed,  
and where the  super{sub-scr ip t  ~ has been temporar i ly  in t roduced  
in order  to indicate t ha t  p~ and O~ are associated with an e r ror , inherent  
in the  measuring device, character ised by  the quan t i ty  ~. I f  in the 
limit ~ -+ 0 we have the  value a, t hen  we m a y  write : 

a = l imp,(c)  = lim O(a~! ~)) ~ l ima!  ~) = a 
~-~0 ~-+0 ~-->0 

a e Q O d a ~  ~)) ~ lira n~O~(a~ ~)) = a 
z-->-O 

These relat ions show tha t  a is a limit point  o f F ,  since every  neighbour-  
hood defined by  the measurement  process contains at  least one other  
point  ; typical ly ,  one of the set {ai}: notice t ha t  here we are assuming 
t h a t  a = lirn p~(c) exists. There  is also another  means of indicating 

~-->0 

t h a t  a precise value a = lira p~(c) m a y  be considered as a limit point  
~-+0 

of F :  for if one considers a sequence of progressively more accurate  
measurements  as defining a filtered set of neighbourhoods,  t ha t  is to  
say a ~ O~o(ao) ~ O ~ ( a l )  ~ O~(a2)  ~ . . .  ~ O~,o(a,~), where ~i < ~i+1, and 
where m + 1 is the number  of measurements  made,  t hen  each set 
O~,(ai) - O~,_~(ai_l) is bo th  contained in O~(ai)  and contains a point  
different f rom a = lira p~(c) ; also, the ne ighbourhood O~o(ao) contains 

~-§ 

both  a and a0. We m a y  therefore  reasonably  assume, on the basis of 
these arguments ,  t ha t  a measuring process does not  give rise to  l imit 
points  in the  space F ,  bu t  does give rise to  a set of  neighbourhoods 
adequa te  for describing the  topology of the subsets o f f  accessible b y  
measurement .  
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2.5. Closed and Open Sets 

DF/IVTN(3) : I f  X is a subset of a set S, which has been given a 
topology, then X, the closure of X, is the union of the set X and 
set of all limit points of X. 

In  order to use the notion of closed sets, the definition above makes 
it clear that  one must be able to specify all the limit points of a given 
set. Now, whilst an actual measurement does specify a set, namely a 
neighbourhood lying in F, and infers a limit point of the measurement 
process, namely lira p~(c), it is not a priori possible to assert that  any 
measurement process can detect every possible limit point (repre- 
senting a measurement value in the space of parameters F) for the 
very simple reason that  each process has a minimum error which 
cannot a priori be said not to mask any effects of finer detail. This last 
remark is not meant to preclude the case where a very successful 
theory combined with experiments of sufficient accuracy does in 
actual fact indicate that  it may be possible to know all limit points of 
a given set; for example, physicists probably accept as sufficiently 
well demonstrated that  quantum mechanics describes the spectrum 
of hydrogen, so that  they may take the limit point of the set of bound 
energy levels as characterised by the state with zero total energy. 
However, if one wishes to construct a mathematical theory for 
physics which can always be enriched in structure without changing 
its basic form, then one must start from the weakest assumptions-- 
and here as we have seen, it is necessary to assume that  : 

ASSN(1) : In  general, a measurement process defines open sets of the 
value parameter space, and closed sets may be specified by hypothesis 
only. 

Here the well-known reciprocity between closed and open sets has 
been used, namely that  if a set is not closed then it is open. Having 
arrived at the notion of an open set in relation to a measurement, we 
find ourselves at the doorstep of the Separation Axioms. 

2.6. Separation Axioms 

AX(To): Given two points of a topological space S, at least one of 
them is contained in an open set not containing the other. 

AX(T1): Given two points of S, each of them lies in an open set not 
containing the other. 

AX(Te): Hausdorff Axiom: Given two points of S, there exists 
disjoint open sets, each containing just one of the two points. 

Again it is necessary to consider the result of measuring processes 
in order to discover the separation properties--according to the 



ON CAUSAL DYI~A~[ICS WITHOUT METRISATIOi~: PAINT I 125 

Separation Axioms--of the parameter space of measurement values, 
the latter being the basic space available for constructing theories of 
physical phenomena. All that one needs to notice is that one must 
be able to state that the (respective) minimal neighbourhoods, in F, 
of two measured values do not overlap (i.e. they are disjoint), in order 
to be able to assert tha t  the two measured values are distinct (i.e. that  
they are clearly distinguishable from each other); for otherwise it 
would not be possible to assert that  the two actual values (in the 
limiting sense of lim p~) are distinct, the simple reason being that  

r 

they would then both lie in a subset of the parameter space of values 
which could be strictly contained within a minimal neighbourhood. 
As we have already found that  the minimal neighbourhoods must be 
considered to be open, the remarks above lead us to the conclusion 
that  the topology defined on the parameter space of values, F, by 
means of a measurement process, satisfies the Hausdorff Axiom at 
least. 

For convenience, let us suppose tha t  a, b ~F  are two distinct 
measurement values ; in symbols this is written O~o(a) ~ O~o(b) = r In 
particular, this relation expresses the Hausdorffness of F. I t  is quite 
simple to see in a satisfactory intuitive way- -bu t  not too satisfactory 
a mathematical w a y t - - t h a t  the topology of F gained from a measure- 
ment process does have the T0 and T1 properties. For, provided z0 is 
the minimal error, it is always possible provided the condition 
O~o(a) A O,o(b) = r holds to find an s2 > s0 such that  there holds 
a ~ O~,(b), which demonstrates that  To is satisfied. Furthermore one 
can also choose an si > s0 such that  O~l(a ) 4: O~l(a ) N O~(b) r r and 
O~(b) r O~(a) N O~,(b) r r which clearly shows that  Ti is satisfied. 

There are two more commonly used separation axioms, which we 
must not omit to consider if metrisation of physical spaces is to be 
seriously studied. They are as follows : 

AX(T3) : I f  X is a closed set in a topological space S, and y e S is a 
point such tha t  y (~ X, then there exist disjoint open sets U, 
V c S such that  X c U and y e V. 

DF(4) : A T3-space which is also a Tl-space is called a regular space. 

t The difficulty is that  whilst the separation axioms speak of points as if 
they actually are well-defined, practicable measurement processes define open 
sets only. 'Physical '  points are assumed to exist only in so far as the limiting 
process limp,(c) is assumed to exist. Any such assumption can never be 
ul t imately tested because of our inability to build completely error-free 
measuring devices-- to  the strict mathematician, then, we are actually begging 
the question owing to this particular reason. 
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TH(1) : A Tl-space S is regular IFOF for each point x ~ S, and for 
each open set U c S with x ~ U, there exists an open set V c S 
such that  x ~ F and V c U. ] Hocking & Young (1960), TH(2.4). 

AX(T4)  : I f  X, Y c S are disjoint closed sets, then there exist disjoint 
open sets U, V ~ S such that  X c U and Y c V. 

DF(5) : A Tl-space which is also a T4-spaee is called a normal space. 

An immediate difficulty is presented by AX(Ts) in that  a closed set 
has to be specified, and, as has been stated in ASSN(1), it is not 
possible, in general, to specify a closed set by means of a measurement 
process. We may remark that  if a closed set X were postulated, then 
AX(T~) would demand that  it be possible to cover it completely by a 
union of open neighbourhood s defined by a set of measurements that  
can actually be performed. But even an application of TH(1) is 
inconclusive, because it is only possible to assert a priori that  all the 
limit points of a subset of the parameter space of measurement values 
belong to the subset, whilst it is never possible in practice to make 
even an error-free a posteriori statement about any particular 
measurement value. Therefore we may say: 

ASSN(2) :  I n  the completely general case it is impossible to assert 
regularity for a parameter space of values. However, when a 
measurement process appears to yield well-defined limit points for 
sets of measurements, it may be a useful approximation to assume 
that the parameter space be regular. 

RMK(5)  : I t  is quite clear that  if a measuring process p~0 with minimal 
error ~0 be assumed to give the parameter space F of measured values 
a regular topology wherever pEo(C) has a meaning, then if X c F be 
assumed to be closed, then for any y E F there must hold O~o(y) N X = r 
otherwise it would not be possible to assert that  y be not a limit point 
of X [see TH(1)]. 
RMK(6)  : A similar assumption to ASSN(2) must be stated about the 
normality of the parameter space of measurement values. 

2.7. Compactness 
Before we finally reach a conclusion about the nature of the 

topology of the parameter space of measurement values, it is neces- 
sary to examine the 'physical' interpretation of the notions of com- 
pactness and paracompactness, t First of all some fundamentals must 
be given. 

TH(2) : X ~ S is compact IFOF every open covering of S contains a 
finite covering of X. ] Hocking & Young (1960), LMA(1.20). 

t Fo r  pa r acom pac tne s s  see Sect ion 4.2. 
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TH(3) : Let S be a Hausdorff space and X c S be a compact subset, 
and let y e S and y ~ X. Then there exist disjoint open sets U, V 
such tha t  y ~ U, X < V. ] Hocking & Young (1960), TH(2.1). 

COR(1) : Compact sets in a Hausdorff space are closed. ] Hocking & 
Young (1960), COR(2.2). 

DF(6) : A space S is said to have the finite intersection property pro- 
vided that  if (A~} is any set of closed subsets such that  any finite 
number has a non-empty intersection, then the total intersection 
(~,~A~ is non-empty. 

TH(~) : Compactness is equivalent to the finite intersection property. ] 
Hocking & Young (1960). TH(I.22). 

RMK(7): Owing to the finite, non-zero size of the neighbourhoods 
defined in the parameter space of values F by a measurement process, 
any subset o f f  accessible by the measurement process can be covered 
by a finite number of neighbourhoods. This allows us to state : 

ASSN(3): The topology endowed by a measurement process upon a 
parameter space of measurement values is locally compact and 
Hausdorff. 

Here the term 'locally compact' has been introduced without 
definition because it has a clear intuitive meaning in this context. I t  
may be stated more precisely as follows : 

DF(7) : A topological space S with an open covering (Oi} is said to be 
locally compact if an open neighbourhood U ~ S, S -- U # 6, of 
an arbitrary point x e S can be covered by a finite number of 
the O i. 

I t  is not very difficult to prove the following proposition: 
PR(1): All compact spaces are locally compact, but not all locally 

compact spaces are compact. ] 
RMK(8): From ASSN(3) and TH(2) it is plain that  a subset of F 
obtained by measurements is compact IFOF the subset can be experi- 
mentally detected--for this involves a finite number of defining 
neighbourhoods only, otherwise one would have to live an infinite 
time in order to carry out a non-finite number of experiments giving 
different neighbourhoods. 

The COR(1) of TH(3) introduces an unexpected result. I t  seems to 
contradict the conclusion stated in ASSN(2), which was arrived at 
from the impossibility of enumerating all possible limit points of a 
measurement (sub-) process. ASSN(3) and TH(3) together infer the 
existence of closed sets in the parameter space F, since F is already 
recognised as being Hausdorff at least. However, a measurement 
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process does not define a topology over the whole of F,  but over a 
subset only [see RMK(3)]. Consequently one can only interpret the 
combination of ASSN(3)TH(3) as meaning that  closed sets exist in 
F in a local sense : that is to say, wherever a measurement process has 
not been used actually to verify that a compact topology may be 
given to a region of _~, it is not possible--excepting by hypothesis 
alone--to assert that F is compact, and so contains definable closed 
sets (in terms of the measurement proeess's neighbourhoods as just 
explained), which would, in turn, allow one to assert F to be regular. 

TH(5) : Every compact Hausdorff space is normal. ] Hocking & Young 
(1960), TH(2.3). 

RMK(9): Since a parameter space of measurement values is only 
locally Hausdorff, we may not assert that its topology endowed by a 
measurement process is normal--although it may be--but we may in 
an obvious sense say that it is locally normal. 
RMK(IO): Also it may only be asserted that a parameter space of 
measurement values has the finite intersection property in a local 
sense. 
RMK(11) : I t  will now be shown that  the definition of local compact- 
ness of a space given in DF(7) in a physically interpretable way, is 
equivalent to the customary definition--for example see Hocking & 
Young (I 960), Section 2.10--if one includes the Hausdorff condition 
as in ASSN(3), and does not include regions near the boundary of a 
locally compact subset of a parameter space of measurement values. 
First of all, let us state the necessary definitions : 
DF(8) : A space S is said to be locally compact at a point x E S if there 

exists some open set U ~- S with x ~ U, and such that  U is com- 
pact. 

DF(9) : A space is said to be locally compact if it is locally compact at 
every point. 

I t  may immediately be noted that  DF(9) implies DF(7), for if U is 
compact then so is U. To show that  DF(7) implies DF(9)--at  least as 
far as physics is concerned (and assuming that  the considerations of 
this paper are relevant to physics)--we need to lean on the local 
Hausdorffness of parameter spaces of measurement values. Local 
compactness, in the sense of DF(7), combined with local Hausdorffness 
gives rise to local normal i ty--by TH(5) interpreted locally. This 
condition means that  closed sets exist locally;~ denote such a closed 
set by X. Then X c •, and X is compact by reason of local compact- 
ness in the sense of DF(7). Therefore under the condition of ASSN(3), 

As well as disjoint closed sets coverable by disjoint open sets. 
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we have formally shown that  DF(7) implies DF(9). However, this 
proof is not universally valid in the parameter space of measurement 
values, F, even where i" bears some topology endowed by the measure- 
ment process, owing to the finite, non-zero size of the minimal covering 
neighbourhoods defined by the measurement process. All that  can be 
said is that  O~o(ao) is the smallest set in the vicinity of a precise 
measurement value ; so that  in order to satisfy the local compactness 
condition of DF(8, 9), its closure must lie within a compact set. As 
we have already assumed that  the vicinity of a particular precise value 
may be considered compact--for  this is what the term 'locally 
compact'  means in ASSN(3)--then a sufficiently large number of 
measurement neighbourhoods O~,(ai), si > s0, in the vicinity of O~o(ao) 
and intersecting O,o(ao), will cover O~o(ao) compactly. I f  O,o(ao) were 
supposed to be very close to the edge of a larger compact region o fF ,  
it is not necessarily true that  the 'gap' between O~o(ao) and the edge of 
the regionwould contain, or would be as 'wide' as an c0-neighbourhood. 
In such a case, the neighbourhood O~o(ao) could not be sufficiently 
covered, by  other larger neighbourhoods (resulting from measure- 
ments), to ensure that  one could describe it as 'locally compact', 
without leaving some ambiguity of, or uncertainty in, the physical 
interpretation of the notion. Therefore the equivalence of the defini- 
tions holds only when one considers the inner regions of sufficiently 
large subsets of parameter spaces of measurement values topologised 
by  means of measurement processes. ] 

This equivalence has been discussed at length, as the following 
theorem will enter into the discussions of Section 3.3 on the topo- 
logical properties of transformations in physics : 

TH(IO): Local compactness is invariant under interior mappings. ] 
Hocking & Young (1960), TH(2.S1). 

For the definition of an interior mapping see Section 3.2, DF(15). 

3. Topological Properties of Mappings 

3.1. Introductory Remarks 
The reader will appreciate that  the definition of a measurement 

process in DF(1 and 2) was designed so as to make it quite explicit that  
the numbers which result from any observation are but  indirectly 

t The meaning of this figurative description will become clearer to the 
reader in the light of the notions of equivalence and distinctness which are 
introduced in Section 5.3, DF(22). 
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related to the physical conditions examined. Since, moreover, the 
observational information is not quite precise, it is unlikely that  any 
precise knowledge of the state of a physical condition can be elicited. 
One must therefore examine the possible different ways in which the 
imprecision in the domain and range of a measurement process may 
be tabulated. Neighbourhoods have already been seen to give a useful 
local description of the range, so they may be expected to be used 
again in the domain: in this way, then, it will be natural to introduce 
a topological classification of the mappings representing measurement 
processes and dynamical changes. 

3.2. Properties of Measurement Processes 

The discussion of Section 2 culminated in ASSN(3), which states 
that  the range of a measurement process is Hausdorff and locally 
compact. In order to facilitate discussion, the following notations will 
be adopted: 

CVN/NTN(1): The space of all physical conditions will be denoted 
by C. 

CVN/NTN(2) : A measurement process will be denoted as p. 
CVN/NTN(3): The parameter space of measurement values will be 

denoted by ~. 
RMK(12): dora (p) ~ C; ran(p) _~F. 

In the demonstration of RMK(11), it was made apparent that  it is 
not possible in physics to speak of points in ran(p), but only of 
minimal neighbourhoods. This has the consequence : 
RMK(13) : Even if there exist elements of C which may be mapped 
onto a point of convergence lim p~(c) a F,  it is not possible to discover 

~--->0 

with complete certainty that  such physical conditions exist. However, 
if such conditions do exist, which are precisely definable, then, as 
measurements are made more and more accurately, it should become 
progressively more possible to define unambiguous points of F.  (The 
term 'unambiguous' must refer to some acceptable criterion.) 
RMK(H) : For the sake of strict accuracy we must notice that  in the 
discussion of Section 2, p has been used in the sense that  p : C -~ (~, 
where (r = {Oi} is a collection of sets covering ran (p) with a locally 
compact Hausdorff topology, whilst p was actually defined to be a 
mapping from C into Y. There has been assumed to exist a natural 
map 09:0-->F which maps elements of (r onto neighbourhoods of Y 
in such a way that  ran (p) has the topology described. Again, here it 
will be necessary to assume the existence of 09 in order to speak of p 
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as having topological properties. Indeed the whole possibility of 
giving any intuitively suggestive topological discussion depends upon 
the existence of 0~!! 

ASSN(4)  : There exists a natural map 0 F from the set of measurements 
@ = (0~} (resulting from a measurement/9) into a s/gace F, such that 
to each element O~ there corresponds a subset F0, = @F(O~), and the 
collection {F0~ } gives a locally compact Hausdorff topology to the 
domain of @~/9. 

Having made this clarification we may now proceed to discuss the 
topological properties of/9, considered as a mapping of C into F 
identical to @F/9. Under this assumption, RMK(13) means that  we 
may assume : 

A S S N  (5) : Measurement/grocesses/greserve limit points. 

Considering an open neighbourhood of a condition c �9 C, we know 
that  it cannot be mapped by p onto a single point o fF .  Since/9(c) is 
at smallest an open neighbourhood of a point in F, then/9 must take 
open neighbourhoods of C into open neighbourhoods ofF .  I t  does not 
follow from this tha t /9  is a one-to-one mapping (see Section 2.2 
concerning the n, l, m, j quantum numbers of a hydrogen atom). 
Since there are no direct ways of ascertaining whether a measurement 
process can reveal all the limit points of a set of physical conditions, 
or of whether a corresponding set of limit points in F exists--except 
by intuitional hypothesising on the basis of observational values--it 
is not possible to make any direct statement about how p maps closed 
sub-sets of c. We may therefore state: 

ASSN(6)  : Measurement processes map open sets into open sets. 

In  order to clarify matters a little further on, the following definition 
is introduced. 

DF(IO): A measurement process is called a simple measurement 
process if it is one-to-one. 

The continuity properties of measuring processes can be examined 
by study of the relevant definitions and theorems in the following way: 

DF(11) : Given two sets S, T, each with a topology, a transformation 
.f:S --~ T is called continuous if for any subset X c S and point 
x �9 X, thenf(x)  � 9  

DF(12) : A homeomor/ghism of S onto T is a one-to-one transformation 
f : S  ---> T which is onto, and such that  a point x, x �9 X c S is a 
limit point of X if and only if f (x) is a limit point off(X).  

9 
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Here we have used the notion of 'onto', which is defined as follows : 

DF(13): A transformation g between two sets A, B, g:A --> B, is said 
to be onto if to every element of B there corresponds an element 
of A. 

TH(6):  A necessary and sufficient condition that  a transformation 
f : S  --> T be continuous is that  for any open set U ~ T , f - I ( U )  Js 
open in S. ] Hocking & Young (1960), TH(1.6). 

TH(7):  A necessary and sufficient condition that  a transformation 
f : S  --> T be continuous is tha t  if x e S and f (x )  ~ V c T, then 
there exists an open set U c S  such tha t  x ~ U and f (U)  c V. ] 
Hocking & Young (1960), TH(1.7). 

In  order to avoid the possibility of a query about the omission of 
consideration of TH(6), we may point out tha t  the condition con- 
tained in it is not of much use, for although we may be able to choose 
an open set U c F by means of the union of measurement neighbour- 
hoods, we have no means of actually verifying that  1o-1(U) is not 
closed in C. The reason being tha t  there is no way of detecting all the 
limit points of U; for if tha t  were possible one might hope to apply 
ASSN(5) if p were simple and then check that  :p-l(U) contained all 
its limit points. 

The condition of TH(7) is rather more useful. Let  c ~ C, then 
p(c) ~ O~,(a~)c F, where a~ is some measurement value with error 
si > s0, where s 0 is the minimal error.~Let O~(ai) correspond to V in 
TH(7). Now if ~r is sufficiently large, it will be possible to f ind--  
admit tedly by inference--a small neighbourhood U of c such that  
p~o(U) c V=O~,(ai). (It is, of course, possible to consider V as being 
constructed from a large number of neighbourhoods of almost 
minimal size-- 'almost '  minimal in order to ensure overlapping of 
adjacent neighbourhoods is possible--but it is rather more suggestive 
to consider the approach, used here, of very inaccurate measurements 
defining large open sets. The rest of the paragraph shows why.) As 
long as O~,(ai) = V is very much larger than a minimal neighbourhood, 
the condition given by TH(7) is useful. But as soon as V becomes as 
small as a minimal neighbourhood, the physicist has at his disposal 
no neighbourhood in F-- resul t ing  from any measurement he may 
carry out- -which can be strictly included in the minimal one. That  is 
to say, the condition can no longer be used: there are no more 
appropriate entities to substitute in the condition that  are the direct 
result of observational procedures. Therefore one cannot assume that  
a measurement process is continuous, merely on the basis of experi- 
mental procedures. However, if the assumption is taken a priori, it 
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must be expected that  as the error in a measurement process is reduced 
further, physical conditions which formerly seemed to be precisely 
definable will appear to have more and more internal structure. Only 
if this happens, can the condition of TH(7) be satisfied. 

Before stating the final conclusion on the nature of measurement 
processes, we need the following definitions : 

DF(14) : An open transformation between two sets S, T is one for which 
the image of every open subset of S is open in T. 

Dt~(15): An interior transformation is a continuous open transforma- 
tion. 

ASSN/RMK(7) :  To summarise: the practical limitations of finite, 
non-zero errors in measurements make it possible to state one thing 
only with certainty, namely that a measurement process is an open 
mapping. I f  a measurement process be in fact interior, then every 
increase in precision of measurements will reveal more details of 
structure in physical conditions. 

We may add the following conclusion about simple measurement 
processes : 

TH(8) �9 A necessary and sufficient condition that  a one-to-one trans- 
formation f : S  -~ T be a homeomorphism is that  f be interior. ] 
Hocking & Young (1960), TH(1.9). 

PR(2) : A simple measurement process will always reveal finer details 
of physical conditions when measurements are made more 
accurate. ] 

3.3. Topology of the Spac e of Physical Conditions 

Now that  something of the nature of measurement processes is 
known , two invarianee theorems about transformations may be 
coupled with our knowledge of the topology of F in order to obtain 
some idea of the topology of C. In particular we shall need the follow- 
ing two theorems, of which the second was mentioned at the end of 
Section 2.7. 

TH(9) : Compactness is invariant under continuous transformations. ] 
Hocking & Young (1960), TH(1.24). 

TH(10): Local compactness is invariant under interior transforma- 
tions. ] Hocking & Young (1960), TH(2.51). 

Clearly the second theorem follows from the first. I t  is already 
known from the previous section that  Mthough a measurement process 
may not be strictly considered to be a continuous transformation 
between pairs of sets (of which those in F are smaller than a minimal 
neighbourhood), it is possible to note something of continuity on the 
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coarser scale that  ignores sets smaller than minimal neighbourhoods 
in F.  As such sets are ignored in (observational) practice, we may 
think of measurement processes as continuous, t Therefore since the 
subspace o f f  in which measurement values appear is locally compact 
and ttausdorff, we may assume the same for G. But it is clear that  
this form of argument is not precise in any satisfactory way. These 
considerations may be summarised as follows : 

ASSIV ( 8) : The region of the space of physical conditions that is accessible 
by a measurement process has a locally compact, Hausdorff topology. 

3.4. Dynamical Processes 

Measurement processes reveal no information about the ways in 
which changes between physical conditions occur, other than that  
different sets of measurement values specifying observed physical 
conditions are ordered into a sequence corresponding to the order in 
which the observations are made. The theoretical physicist is left to 
the task of constructing a mathematical formalism which will relate 
the observed measurement values to each other and accurately 
predict new measurement values. This can be characterised quite 
easily in terms of the notions we have developed so far. Let F1 c F be 
an initial set of measurement values characterising an initial condition, 
and let F2 c F be a firfal set. Then the transition which has been 
observed to have occurred is a transformation r with 
Tr[F1 :F1 -+ N2, where we have used the notation: 

NTN(2): Given two sets S, T and a mapping f : S  -+ T, then i fA c S, 
the restriction mapping of f such that  A is mapped into T is 
denoted by f lA ,  or f ix .  

The corresponding physical process which gives rise to the transition 
F1 -+ F2 is a mapping ~r: C -+ C, which also satisfies 

~ l p - l ( f l )  :p-l(F1) -+ p-~(F2) 

These notions can be expressed by the commutative diagrams: 

C1- ~,lc~ > 6'2 C ~ ~ C 

F1 ~IF~ ~F~ F "~ ~F  

t However, we shall be able to view this statement with more equanimity by 
referring the reader to the new notion of speiron-continuity, introduced in 
Section 5.3, DF(26). 
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The unusual notations 7r and w (curly 7r) have been chosen for 
reasons which will become apparent in a later paper concerning fibre 
maps. We shall call the mapping w a dynamical process for obvious 
reasons, but a more precise definition of the term will not be given 
until fuller considerations have been presented. 

By reason of ASSN/I~MK(7) we deduce that  a dynamical process 
must be at least an open mapping. If, however, a measurement 
process does appear to be continuous, then the 'interior-ness' of it will 
imply that  the associated dynamical process is also interior. This 
latter will result from the induced locally compact, Hausdorff 
topology of C, of ASSN(8). We may summarise : 

PR(3) : I f  a measurement process is open/interior, then the dynamical 
process relating physical conditions measured by the process is 
also open/interior, respectively. ] 

4. Smirnov's Metrisation Theorems 

4.1. Introductory Remarks 
I t  has become clear that  the charaeterisation of physical conditions 

by means of elements of a space of parameters, that  is a space of 
measurement values, leads us to a far less precise picture of the 
physical world than is currently used. Whereas nowadays physicists 
freely speak of points in space (of one kind or another) or use other 
'sharply defined' notions, it has become clear that  from a topological 
point of view it is impossible to assume the existence of such points ; 
instead one has only neighbourhoods of a point, and any point can 
be postulated to exist only as the limit of a denumerable sequence of 
refined measurements, the limiting measurement having zero error. 

RMK(15): I t  is therefore true to say that  the physicist is in a far 
worse position than the topologist, for the topologist does actually 
have points in his topological spaces ; the points are in fact the elements 
of a set to which a topology is given. The physicist, in contrast, has 
objects which within the limits of his perception only appear to be 
like those things a topologist calls neigbbourhoods. But since the 
physicist has no such things as points, he can only assert that  
some measurement processes go so far to the limit of his perception of 
error that  their measurement values seem to have properties in 
common with the topologist's points. Refinement of measuring 
techniques can always lead to the discovery of sub-structure within 
his 'point', however. 

Metrisation is usually considered as the defining of a function over 
the cartesian product of a space with itself, which maps the product 
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into a number  field, and which function satisfies certain well-known 
axioms, namely:  

DF(I6)  : Given a space S, a metric over S is a funct ion d(S,S),  defined 
on S • S, wi th  vMues in a number  field such t h a t  the following 
conditions hold: 

A X / C D N ( 1 )  : d(x, y) = 0 ~ x = y, V x, y c S 
A X / C D N ( 2 ) :  d ( x , y ) = d ( y , x ) ,  V x ,  y ~ S ;  
A X / C D N ( 3 )  : d(x, z) <~ d(x, y) + d(y, z), V x, y, z e S 

(triangle inequality). 

This not ion relies upon tha t  of the point,  and  so is an idealisation of 
any  apparent  metric properties of parameter  spaces of measurement  
values. This observation has the following very impor tan t  con- 
sequence : 
R M K ( 1 6 ) :  Although a measurement  process m a y  donate a topology 
which is locally metrisable, it  is not  at  all certain t h a t  i t  is globally 
metrisable. I t  is in fact known tha t  a locally metrisable Hausdorff  
space is not  metrisable except under  a very part icular  condition [see 
TH(13)]. 

Therefore it  is quite impor tan t  to  examine how closely the topo- 
logical interpretat ion of physical l imitations in measurement  m a y  
restrict the val idi ty  of the not ion of metrisat ion in physics. For  
instance, a l though we are familiar with metric properties of three- 
dimensional space in the macroscopic scale, we must  seriously ask if 
the not ion m a y  still be valid at  extreme distances. 

1.2. Paracompactnesa 

The most  essential not ion for our discussion of metrisabil i ty is the 
not ion of paracompactness.  I t  is very closely connected with the 
problem of reducing errors in measurement  processes. First  of all we 
need some prel iminary notions. 

N T N ( 3 ) :  I f  {Vt~ } is a refinement of a covering {Us}, we write 

(us}  < 
R M K ( 1 7 )  : This quite clearly can be interpreted physically, by  noticing 
tha t  if  ~j is the error associated with a measurement  process, and 
ci, r < r is the error associated with a more accurate measurement  
process of the same kind, then  if  @~, = (0(r and @~, = (0(. ,)/~} are the 
respective coverings of F we write (~; < (Q,. For, quite ;lear]y, the 
topology donated  by  (Q, is a refinement of t ha t  given by /Q, 
D_~(17): A covering {U,) of a space S is called a locally )~aite covering 

if  for each point x ~ S there exists an open set in S which contains 
x and intersects no more t han  a finite number  of elements of {U~}. 
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RMK(18) : By taking a covering 0r = {0(r } as being the collection 
of all subsets off determined by a measurement process t any region 
off (that is covered at all) can only be covered by a finite number of 
elements of (9~, owing to the impossibility of carrying out an infinite 
number of measurements in a finite time. Therefore we may say that 
a measurement process endows a locally finite covering on F. 
DF(18) : A space S is calledparacompact if every covering of S possesses 

an open, locally finite refinement. 
RMK(19) : Since such parts o f f  as are covered by the neighbourhoods 
endowed by a measurement process have a definite, non-zero, minimum 
size, it is quite clear that  no physical space can ever be discovered to 
be paracompaet--for it is impossible for a finite number of observers 
to make an infinite number of observations in a finite time. This simple 
and rather na~'vc, point enables our conclusion to be asserted forcefully: 
for if one constructs a theory dependent upon a certain hypothesis, 
some way of testing the hypothesis must eventually be found if one 
ever wishes to ascertain the validity of the theory; paracompactness 
is essentially untestable. Therefore the following assumption is made 
explicit : 

ASSN(9): No space of measurement values may be assumed to be 
paracompact. 

4.3. Lebesgue Numbers 

Here we introduce a notion parallel to that  of minimal neighbour- 
hoods of a covering ofF ,  and that  is used in mathematics, namely the 
Lebesgue number of a covering. The following theorem can be proven : 

TH(11): Let M be a compact metric space, and let ~ = {U,~} be a 
finite open covering of M. Then there exists a positive number 
d(~) such tha t  each subset of M of diameter less than d(~) is 
contained in at least one element of ~ .  ] Hocking & Young (1960) 
TH(1.32) 

CVN(~): The number d(~]) is called the Lebesgue number of the 
covering ~ .  

The parallelism is that  if a set of physical conditions X c C (or one 
physical condition) is capable of being more precisely specified in F 
than a certain measurement process p~ indicates, then one may 
legitimately write the strict relation p(X) c 0~, where O~ is a minimal 
neighbourhood of the covering which p~ gives to F, and p is a measure- 
ment process of greater accuracy than p~. Consequently, when a 

This means that a union of elements of ~)~ is not counted as an element of 
(9 ~, but as an open set of the topology of F defined by (JOe. 
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metric is introduced into local regions o fF ,  it will always be possible 
to state that  the typical set p(X) lies within an element of the covering 
o f f  tha t  has diameter ~. Thus ~ is the Lebesgue number of the covering 
o f f  given by pc. We may say, then: 

C VN(5)  : I t  is said that  a measurement process p ~ has Lebesgue num- 
ber ~.'~ 

4.4. Metrisation Theorems 

The first general theorem of Smirnov (1951) states the following 
condition: 

TH(12)  : In order that  a topological space S be metrisablc, it is neces- 
sary and sufficient that  it be regular and that  it possess a basis ~/ 
which is the union of not more than a denumerable number of 
locally finite systems ~/,. ] Smirnov (1951), TH(1). 

A slight generalisation of a locally finite covering has been used, 
namely: 

DF( t9 )  : A system of sets ~ / o f  a given topological space is called a 
locally finite system (of sets) if each point of the space has a 
neighbourhood intersecting a finite number of sets of the system 

only. 

A locally finite system can easily be made into a locally finite cover- 
ing by adding as a new element the whole space. Therefore we do not 
have to make any investigation of the physical difference between the 
two notions. However, Smirnov does make the following important 
comment : 

PR(4)  : I f  a Tl-Space has a basis which is the union of a finite number 
of locally-finite systems, then it consists of isolated points. ] 
Smirnov (1951), RMK(2). 

R M K ( 2 0 )  : In Section 2.6 it was shown that  F is a Tl-space, then that  
the local compactness property of ASSN(3), DF(7) is equivalent to 
the locally finite system property. I t  is also clear that  no more than a 
finite number of locally finite systems of measurement neighbourhoods 
can be defined in F by experimentation--for, as has been previously 
stated, a finite number of people operating measurement devices 
cannot produce an infinite number of results in a finite time. Applica- 
tion of PR(4) leads us to the conclusion that  F consists of isolated 
points. In contradiction to that,  it is not possible to detect isolated 
points by means of a measurement process, as we have been very 

"~ Here  we have  assumed r F is locally metr i sable ;  see DF(20),  I~ViK(21). 
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careful to remark. Therefore this approach to the s tudy of the topo- 
logical properties of physical spaces--and indirectly, physical condi- 
t i o n s - h a s  an inherent inadequacy, for there are not enough tools of 
analysis to examine the physical implications of PR(r Nevertheless, 
let us continue, in the hope that  a fairly complete analysis in this vein 
will bring to light, directly or indirectly, inadequacies which may be 
rectified at a later date. 

Returning to TH(12), it is known from ASSN(2) that  the regularity 
of F can never be asserted, therefore TH(12) indicates that  it is not. 
possible to assert that  F is a metric space. Looking at the AX(T1, T,~), 
it is plain that  one may be able to approximate F to a metric space, 
however. For by  TH(3), COR(1), ASSN(3), it is possible to define a 
small compact se t - -not  minimally small--which is closed, and cover 
by  disjoint open sets such a set as well as a point not included in the 
set. Therefore in this coarser sense (compared with the use of minimal 
neighbourhoods), F can be considered as approximately regular. 
Nevertheless one still is confronted with the difficulty of PR(4), 
RMK(20) above. 

A second theorem of Smirnov (1951), TH(2), involves the normality 
property in the metrisation condition. But again, normality is essen- 
tially incapable of being tested. Smirnov's third theorem does give, 
however, a most useful criterion which is also an extremely general 
condition for metrisation: 

TH(13): In order that  a locally-metrisable Hausdorff space be 
metrisable, it is necessary and sufficient that  it be paracompact. ] 
Smirnov (1951), TH(3). 

Here use has been made of the following notion: 

DF(20) : A space is called locally metrisable if each point of it has a 
neighbourhood which is a metric space. 

RMK(21):  Because one usually assumes that a measuring device 
gives sets of measurement values (corresponding to physical condi- 
tions) that  behave according to the conditions of DF(16), that  is to 
say the instinctive ordering a physicist gives to his measurement 
values is that  of the real line (or higher dimensional Euclidean space), 
we may assume that  F is at least locally metrisable. By RMK(19), 
ASSN(9), paracompaetness is a property of F - - a n d  hence of C, by 
implication--which cannot be a priori assumed. Therefore we come 
to the following conclusion, which appears quite remarkable 

PR(5): Even though a measurement process may donate a locally 
metrisable topology to a parameter space of measurement values F, 
the entirety of F may not be metrisable. "! 
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5. Planted Structures 

5.1. Introductory Remarlcs 

The simple observation that  a measuring process p~ : C -+ F does 
not map 'points' (i.e. well-defined elements) of C into points o fF ,  but 
can at best map an element of C into a neighbourhood o f f  no smaller 
than a certain size characterised by ~, has led to difficulties over 
continuity of dynamical mappings and dynamical transformations. 
The difficulty is that  any structure in C which a more refined measure- 
ment process would map into a region of F smaller than an 'z-neigh- 
bourhood', is not distinguishable. I t  would therefore be desirable to 
be able to set up a mathematical formalism in which part of the 
structure may be hidden (i.e. ignored), and at the same time is provided 
with a means of uncovering the hidden structure by a process akin to 
increasing the accuracy of measurement. For this purpose we propose 
a new species of mathematical structure, which we shall name Planted 
Structures, t based upon some general notions of C. Ehresmann 
(1953). 

5.2. Species of Mathematical Structures 

I t  has already been made clear, in Section 2.3, that  a topological 
structure on a set E is defined by giving a set &, of subsets of E, which 
satisfies the union and intersection axioms of topological spaces, the 
elements Oil& being called the open subsets of E. 

The set E can be considered as being quite arbitrary. The law of 
formation of ~(~(E)) ,  starting from E, together with the union and 
intersection axioms of a topological space define a species of topo- 
logical structure, namely the class of topological structures on an 
arbitrary set. 

Because the smallest possible observable differences in measurement 
values are involved in discussing the topological properties of 
dynamical mapping and dynamical processes, we must consider the 
notion of local structure, which Ehresmann (1953) defines as: 

DF(21) : A species of local structures is a species of structures (2) for 
which there is given a law of induct ion-- that  is to say a law 
which associates to every structure S of a species ()t) given on a 
set E, a set q5 of subsets of E, and which determines on every set 
U c r a structure of species (;~) called the structure induced by S 
on U, the set U provided with this structure being called a 

t A n  example  of a Z e e m a n  'To le rance  Space ' .  
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di~'tinguished subspace of E - - i n  such a way that  the following 
conditions are satisfied: 

CD.N(1) : ~ is the set of open sets of a topology on E. I t  will be 
said that  S is a local structure with respect to the topology (I). 

CDN(2): The law of induction is canonical, that  is to say if a 
one-to-one mapping f of E onto E'  transports the structure 
S onto a structure S' defined in E', then the restriction o f f  
to such a distinguished subspace of E is an isomorphism 
onto a distinguished subspace of E'  provided with the 
structure S'. 

CDN(3): (Transitivity of induced structures): I f  U is a distin- 
guished subspace of E, then the distinguished subspaces of 
U are the distinguished subspaces of E contained in U. 

AX/CDN(4)  : (Patching axiom) : If  E '  is the union of a family of 
subsets E i of which each is provided with a structure of 
species (2) such that E i ~) Ej be a distinguished subspace of 
Ei and Ej, the structures induced on E~ N Ej by those which 
are given on E~ and Ej being identical, there exists on E'  a 
well-defined structure of species (2) such that E,~ be a 
distinguished subspace of E'  provided with this structure. 
We shall say that  the space E'  provided with this structure 
is obtained by patching of subspaces E,~. The structures given 
on the E i will be called coherent amongst themselves. 

There are two well-studied forms of local structure, called Fibrous 
Structure and Foliate Structure. 

Planted Structures can possess both fibrous and foliate structures 
simultaneously, ~s will be apparent from their definition. 

5.3. Planted Structures 

DF(22) : Let ~/F be a covering, of the space E, with Lebesgue number 
d(~f~). Denote by ~L(-) the elements of ~ (E)  which have diameter 
less than d(:f~) ; denote by ~L(0) the elements of.~(E) which have 
diameter equal to d(:t~), and denote by  ~L(+) those elements of 
~ (E)  which have diameter greater than d(:f~). We now select 
certain subsets of E for use in defining the :f~-planted structure 
E~, which satisfy the following conditions : 
CDN(1) : Any subset U (~ ~ E which belongs to ~(0)  is called a 

p/p  of E~.  

For any two subsets U i and Uj of E, we say : 

CDN(2): U~ is ~f~-identical to Uj if [U,~ - (U~ N Uj)] E ~Z(--). 
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CDN(3) : Ui is nominally Or-distinct from Uj if 

- n u j ) ]  c 

CDN ( 4) : Ui is strictly ~f~-distinct from U~ if 

- n u j ) ]  c 

CDN(5): Ui and U~ are ~/-disjoint if (Ui 0 Uj) c ~L(-). 

These conditions may be strengthened as follows : 

CDN((2)) : U i and Uj are said to be ~f~-bi-identieal if each subset 
is ~f~-identica] to the other. 

CDN((3)) : Ui and Uj are said to be nominally $/-bidistinct if each 
subset is nominally ~f%distinct from the other. 

CDN((4)) : Ui and Uj are said to be strictly ~f'-bidistinct if each 
subset is strictly ~/-distinct from the other. 

The collection of all ~f~-distinct elements of ~ (E)  is called the 
generalised ~f~-planted structure on E, and it will be denoted 
by E~. 

RMK(22) : A generalised ~f~-planted structure on a topological space 
E may therefore be built up as follows: (i) every set smaller than a 
~L(0)=set is identified with the E~-pips in which it lies; (ii) every 
~L(0)-set is an E~-pip, the smallest that  cau be considered in E~ ;  
(iii) any two sets of E which are ~f~-identical are represented by  the 
same elements of E~ ;  (iv) the first sets containing more than one 
E~-pip are those which are nominally ~f~-distinct from E~-pips, and 
they contain two E+--pips. 

The multiple identification of subsets of E, which is used to create 
E~,  produces a problem, in the simplest cases of (i) and (ii) above, 
concerning the way in which pips of E~  are packed together. The 
s tudy of this problem is one in the field of homology theory, and in 
particular the general technique of Cech homology theory; it is 
initiated in Section 6. 

Before we examine the first separation properties (cf. Section 2.6) 
of planted structures, we may consider two extreme cases of 'sowing' 
one topological space in another. 

DF(23) : Given two topological spaces E, F, and a covering ~ of F 
with Lebesgue number d(~f~), we call a homomorphism 
g~ : E -~ F ~  a speiromorphism of E into the ~/r-planted structure 
o n  F .  
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DF(24) : In case (a), where d($/) = 0, the speiromorphism g~ is called 

an embedding of E in F ;  in case (b), where F~p is a single F~-pip, 
then E is said to be buried in F by g~. 

RMK/D2"(23) :  Thus a speiromorphism is a generalisation of an 
embedding or immersion. If  ~ is a covering of a topological space 
E with Lebesgue number d(~/), then a speirojection of E is a speiro- 
morphism g~ :E  --~ E~,  
DF(25)  : Given'~two topological spaces E, 2", and a covering $ / o f  2" 

with Lebesgue number d($/~), we call a homomorphism 
h f : F ~  --> E an ekthamnomorphism of the ~t~-planted structure 
on 2" into E. If  given a speiromorphism g~ : E -+ 2"~, there exists 
an ekthamnomorphism hr~:F~ -+ E and such that  h~ g~.~ = 1~ and 
g ~ h ~  = 1 F, the identity mappings on E, F, respectively, then g~ 
is called a speireomorphism. 

R M K / D F ( 2 4 ) :  In  an obvious way we call an ekthamnomorphism 
h~ : E~  -~ E an dcthamnojection. 

We can now re-shape the separation axioms so that  they may apply 
to a planted structure of a topological space ; there is assumed given a 
topological space E with an open covering ~ ,  of Lebesgue number 
d(~): 
A X ( ~ [  - To) : Given two pips y~, Y2 e E~, there exist two ~-distinct 

open sets in E such that  at least one of y~, Y2 belongs to an open 
set not containing the other. 

A X ( ~ [  - T~) : Given two pips of E~, each one lies in one of a pair of 
open sets of E not containing the other pip, the pair of sets being 
at least ~/-bidistinet. 

A X ( ~ [  - T2) : (Speiron-Hausdorff axiom): Given two pips of E~t 
there exist two ~/-disjoint subsets each containing just one pip. 

Using the n~eessary and sufficient condition for the continuity of 
a mapping given in TH(7), we may analogously define the notion of 
speiron-eontinuity of a speiromorphism in the following way : 

D2"(26) : Given two topological spaces E, 2", the latter possessing a 
planted structure F~,  and a speiromorphism g f  : E --~ 2"~p, then 
g~ is said to be speiron-continuous if for a point x e E and the pip 
g~(x) ~ F there exist two subsets U ~ E and V ~ 2" such that  
x e U, g~(x) ~ V and V is :t~-distinct from g~(U). 

R M K ( 2 5 )  : I t  is immediately noticed tha t  a burying speiromorphism 
--or,  more grotesquely, a 'burial '--is not speiron-continuous; how- 
ever, an embedding speiromorphism is continuous in the ordinary 
sense. A homomorphism g : E  ~ F has associated with it a homo- 
morphism g(,) : E~ -+ F~-, which is also called a speiromorphism. For 
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let e~ a n d f ~  be the speirojections for E and F into E~ and F ~  respec- 
tively, then g(,) is such that  there holds forg = g(,)e~; that  is to say 
w e  h a v e  the  c o m m u t a t i v e  d i a g r a m  : 

E g > F  -1 1 
The notion of speiron-continuity may also be similarly adapted : if x is 
a pip of E and g(,) is speiron-continuous, there exist two open sets 
U c E and V c / '  such that  x e U, g(,)e~(x) c g(,)(U), g(,)(U) c V and 
that  g(,)(U) is :F-distinct from V. 

Referring back to Section 3 it is apparent that  measurement 
processes fit into this structure, in particular: 

PR(6): A measurement process p~:C-+F is a speiromorphism 
C-+ F~. ] 

5.4. Pip Set Topology of Planted Structures 

In Section 2 we considered aspects of topological spaces which are 
commonly known under the general title of 'Point Set Topology'. 
There is therefore the necessity of considering the speiron-analogues 
of various notions if we are to develop the use of speiromorphisms for 
representing measurement processes. A little has already been done 
by stating the axioms AX(C/-To ,T1 ,T2)  and defining speiron- 
continuity (in what is, so far, a purely intuitive way), but we must 
go further, using, in the process, the distinguished subsets of planted 
structures, namely those that  are distinct from pips. In the following 
let us again assume that  E, F are topological spaces with coverings 
~/, r respectively, each covering having a Lebesgue number d(~), 
d (~)  respectively. E~, F ~  will be the respective planted structures 
resulting from application of the respective speirojections e~, f~.  

First of all we need the notion of (distinguished)t open sets : 

DF/NTN(27): A system of distinguished sets ~(E) = {U~E)} is called 
a covering of E,~ if Er c U i U!E) and it is called an open covering 
of E~ if it satisfies : 
CDN(1) : The union of an arbitrary number of opent sets is an 

open set. 

From now on we shall assume that all sets in E~, F~  which are mentioned 
are in fact distinguished sets. 
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CD~V(2) : The intersection of a finite number of open sets is an 
open set. 

There next follows the need for an analogue of limit points : 

DF(28) : I f  a pip x e E is a limit pip of Ee, then every (distinguished) 
subset of E containing x also contains another distinct E~-pip. 

RMK(26) : I t  is immediately obvious that  the usual notion of limit 
point cannot be taken straight into the field of planted structures, 
because there is no analogue of a sequence of progressively smaller 
sets. Therefore in a planted structure E~ an ordinary point of E has 
no special distinction from a limit point. The definition of a 'limit pip' 
given above is quite a different notion, for it defines what one might 
call 'pips at infinity' of E~, that  is to say pips which are indefinitely 
remote from an arbitrary pip. Only when d(~) = 0 does the notion of 
limit pip correspond to that  of limit point, that  is to say the corre- 
spondence does not hold unless e~ is an endomorphism of E. 

From the notion of speiron-continuity of a speiromorphism 
E~ --~ F ~  as enlarged in RMK(25), and from DF(28), it is easy to 
verify a result familiar in the limit of the speiromorphism being a map 
between two ordinary topological spaces : 

PR(7): Limit pips are preserved under (speiron-) continuous speiro- 
morphisms, l 

An analogue of open maps may also be defined: 

DF(29) : An open speiromorphism transforms (distinguished) open sets 
into (distinguished) open sets. 

Let us now look at the analogues of compactness and local compact- 
ness. We make the obvious choice of terminology. 

DF(30) : A planted structure E~ is said to be (speiron-) compact if it 
can be covered by a finite number of (distinguished) open sets. 

PR(8) : I f  E~ has at least one limit pip it is non-speiron-compact. ] 
DF(31) : A planted structure is said to be locally (speiron-) compact at 

a p/p x, if there is a speiron-compact (distinguished) open set 
containing x. 

DF(32) : A planted structure is said to be locally (speiron-) compact if 
it is locally speiron-compact at every pip. 

From these definitions one immediately sees that  : 

PR(9): A planted structure is locally speiron-compact everywhere 
except at a limit pip. ] 

PR(IO) : A compact planted structure is locally compact. ] 
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P R ( l l ) :  Speiron-compactness and local speiron-compactness are 
invariant under speiromorphisms. ] 

PR(12): (Topological) compactness and local compactness are in- 
variant under speirojections and speiromorphisms. ] 

6. ~ech Homology of Planted Structures 

6.1. Introductory Remarks 

Following Section 5.3, RMK(22), we shall now examine a little of 
the hCmology properties of planted structures by  Cech's techniques. 
The necessity for this arises from what can be called the 'packing' 
properties of planted structures-- there will be many sets of a space E 
which are ~/-identical to a pip e~ of the ~-planted structure E~, 
and many of the sets of E just  ~/-distinct from e~ wilt not be P-dist inct  
amongst themselves. This leads immediately to a multiple ~-identifi- 
cation of distinct sets (in E) about the pip e~, that  is to say the sets of 
E which are just ~/-distinet from e~ e E~ give rise to a certain number 
of pips which are packed around e~. Clearly it is a complicated situa- 
tion to visualise; but  since homology theory does describe something 
of the way in which bits and pieces of a space 'pack' together, it is 
natural to s tudy the way in which the homology properties of planted 
structures might be discussed. I t  will become apparent that  Cech 
theory is the most natural choice of technique. The treatment here 
follows Chapter 8 of Hocking & Young (1960), and a simple knowledge 
of chain groups, boundary operators and homology groups is assumed. 

6.2. Nerve of a Covering 

D_F(33) : Let E be a topological space, and Z(E) be the set of all open 
coverings ~ ,  V . . . . .  of E, their Lebesgue numbers being denoted 
by  d(~), d($/'), ..., respectively. In conventional Ceeh homology 
theory a covering ~' is considered as a simplicial complex by  
defining the elements of ~ as the vertices, and the sub-collections 
of distinct elements with non-vanishing intersections as the 
simplexes. The simplicial complex so constructed is called the 
nerve of the covering ~ .  

NTN(4) : The nerve of a covering ~ is denoted as X ( ~ ) .  The adjust- 
ment of these notions to the planted structures is straightforward. 

DF(34) : Let E be a topological space and let X(E) be the set of all 
open coverings ~ ,  ~f~ . . . .  , of E;  furthermore, let 2: (E) denote the 
set of all coverings ~(z), $/-(E) . . . .  , of the respective planted 
structures E~, E~,  .... A vertex of a covering ~,(E) is taken as a 
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~-distinguished set of E , ,  and a simplex as a sub-collection of 
mutually ~-distinct elements of ~(~) the intersection of which is 
a ~/-distinguished set~ (i.e. an element of ~(~)) and is ~-distinct 
from each of the vertices. The resulting simplicial complex 
~(~/(E)) iS called the nerve of the covering ~(~). 

6.3. Chain-Homotopic Projeetions 

In order to understand more clearly the complications existing in 
the 0ech homology of planted structures, we must briefly examine a 
few of the preliminaries of the ordinary 0ech homology of a topo- 
logical space. 

RMK(27) : A partial ordering may be introduced into the set X(E) by 
refinement. Also a covering ~ /~  r  E may be defined as consisting 
of all non-empty intersections U N V of U E ~/and V e Of. One easily 
sees tha t  ~ ~ ~ > ~ and tha t  ~ / 0  ~f~ > r And hence we may 
consider Z(E) as a directed set under refinement. 
RMK(28) : There exists a simplicial mapping, called a projection, of a 
finer covering ~f~ into a coarser covering ~ ;  we shall denote it as 
a ~ : ~ f " - +  ~/, ~ ,  : f ' ~  Z(E). I t  is defined by taking ~ ( V ) =  U, 
U E ~ ,  V E $/, where U is any fixed element of ~ such that  V c U: 
this condition means that  there can be many projections ~q~: r  ~ .  
Possible ambiguity owing to this multiplicity of projections is removed 
by the theorem : 
TH(14) : If  r  ~ in Z(E), then any two projections al, a2 such that  

:f~--> ~/, are chain homotopic. ] Hocking & Young (1960), 
TH(8.2.). 

RMK(29) : This result merely means that  a~, a2 induce the same homo- 
morphism a ,  between the groups H~(~(~f'),  G) and H~(/V(~), G), 
where G is the coefficient group.:~ Also we may state that  if 
$4 z > $ / >  ~ ,  then ~ - ,  ~ f , ,  = ~ - , .  I t  is not necessary to recount 
any more in order to proceed with the qualitative discussion of the 
physical relevance of the application of these notions to planted 
structures. 
RMK(30): Suppose tha t  Sf(s) > ~(E) for two elements of Z (s), then 
one expects from TH(14) that  there will exist ~ chain homotopy 
a(E) Hr(~(C/~(E)), G) ~ Hr(~(~f'(s)), G) that  is the same for all p. ~ *  : 

t T h a t  is to  say,  a t  least  as big as an  E~-p ip .  
$ I t  is sufficient to  no te  t h a t  in general  Cech homology  theo ry  it is k n o w n  

t h a t  the re  is some re la t ionship  be tween  the  combina t ions  of the  topological  
na tu re s  of q/, $f and  G which m u s t  be satisfied if the  ~ech  homology  groups 
are to exist .  

l0 
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However, this will not be true in general, owing to the dependence of 
r upon d($/) and ~(E) upon d(~). For instance, suppose that E is 
a metric space and is of minimum diameter p, and further suppose 
that the planted structure E~i buries E: then we know that d(~) is 
such that  U will not contain two sets U1, U2 ~ •L(0) which are ~ -  
distinct. In this case the only non-vanishing homology group is 
H0(~(~(E)) ,  G) = G. Let Ui(0), i ~ I(0 ) c J~),  be the coverings of E 
which are refinements of some others (the set I(0 ) indexing (i.e. 
directing) the refinements), the projections of which, ai(0), are chain 
homotopic and induce the sequence of homomorphisms 

, ' H  ~ ! ~ ) , G  (i-1,i)(0) ' T( (z(0))  ) ~ I~p(~/*(~/~/E)l)(0)) , G) 

The first homology group of a planted structure on E cannot exist 
until a refinement ~ of the covering of E is reached such that  E ~  
consists of two ~//-distinct pips. Let $/~i(1), i E 1(2 ) c J~ )  be the set of 
coverings of E directed by  refinement, as for ~i(0), such that  

(E) Hi(~P(~'fi~i(1)), G) may exist. Using an obvious extension of these ideas, 
we may state : 

TH(15) : I f  f/r > $/" > ~ in Z(E), then the induced homomorphisms 
a ~ ,  and a ~ ,  are, in general, different. ] 

CORR/RMK(TH(15)): In general, a~fr* and a~lfr* are induced by 
different equivalence classes of projections. 

RMK(31) : Now if a topological space E is paracompact, the directed 
set of coverings Z(E) is denumerably infinite, and if j ~J~) ,  any 
sequence of refined coverings ~0, ~1, ..., ~ j  . . . .  is such that the 
Lebesgue number d(~j) -~ 0 as j -~ ~. Therefore, with this notation, 
we have the simple result : 

PR(13) : I f  E is paracompact and Z '  ~ Z(E) is an infinite, denumer- 
able, directed set of refinements of coverings (~j} of E, indexed 
by J~), j ~ J~),  then E~j ~ E as j -~ ~. ] 

One might have expected PR(13) to be in the form lira E ~  = E, 
j ~  co 

but it is by no means certain that, in all cases of a paracompact E, 
the equality will hold. Conditions for the existence of the limit are 
not studied here, but we shall give an example, EX(1) below, which 
illustrates the form of di~cu]ty one may expect. Consider, for the 
moment that E is a foam rubber sponge, whose empty holes are all 
less than or equal to a certain volume VE. Then any covering ~ with 
d(~) > VE will make the sponge appear solid: let us denote the finest 
covering which does this by ~0. Then refinements ~i, constituting a 
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directed set indexed by I, (i ~ I), will begin to reveal more and more 
of the structure, until all of even the smallest holes are revealed. But 
the situation can be made much more complicated: suppose now that  
E is a ship's biscuit with much the same structure, but that  the biscuit 
is suddenly infested by microscopic quantum weevils. They will im- 
mediately start to burrow and tunnel (in the quantum sense, of 
course) and make the structure much finer. I f  they start to breed and 
produce baby quantum weevils, the structure will become even more 
riddled. Now it is easy to suppose tha t  these quantum weevils will 
have quantum fleas upon their backs to bite'm, and they will have 
(quantum) littler fleas, and so add itchybitum. One can see that  such 
a hypermultiplet structure can be summarised by the following 
definition: 

DF(35) : A topological space E is called orthocompact if for every pair 
of coverings ~ ,  ~/k with ~j  > ~k there exists a locally finite 
refinement ~s such that  the induced homomorphisms 

and 

are not the same for all p. 

RMK(32) : Thus orthocompactness is a kind of wild speiron-compact- 
hess and wild paracompactness. 
EX(1): An example of an object which is both paracompact and 
orthocompact is Alexander's horned sphere. I t  is paracompact 
because it is constructed by deforming a sphere and it is clearly ortho- 
compact when one constructs a sequence of planted structures upon 
it that  corresponds to the directed set of coverings of E. 
RMK(33) : Since open speiromorphisms have already been identified 
with measurement processes, it is clear that  if the space of physical 
conditions is in fact orthocompact, then an infinite sequence of finite 
improvements in the error of measurement processes will reveal an 
infinite family of different structural properties of the space of 
(observed) physical conditions. 
RMK(34): An advantage is now apparent in formulating physics in 
terms of planted structures ; namely that  a planted structure is not an 
idealisation, but is something tha t  can be directly constructed from 
experiment. This is not true, for instance, of the supposition that  
three-dimensional (spatial) space is homeomorphic (in the embedding 
or immersion sense) to three-dimensional Euclidean space E 3, or even 
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locally homeomorphie to E3; such hypotheses, whilst very useful 
approximations in a multitude of cases, are not verifiable in the limit 
of zero experimental error. 

7. Conclusion 

7.1. Conclusions 

We have seen a number of basic results, namely: (i) a measurement 
process defines a lore-sheaf over the space of physical conditions into 
the set of measurement value spaces; (ii) the strongest topology of a 
measurement value space that may be asserted is locally compact and 
Hausdorff; (iii) measurement processes are open mappings; (iv) 
dynamical processes are open mappings; (v) the regions of the space 
of physical conditions accessible by  measurement processes have a 
locally compact Hausdorff topology; (vi) no space of measurement 
values may be assumed to be paraeomloact; (vii) even though a space 
of measurement values may be assumed to be locally metrisable, it is 
not necessarily metrisable throughout;  (viii) a space of measurement 
values is a planted structure. 

7.2. Further Remarks 

Having shown that  metrisability of measurement spaces, as opposed 
to local metrisability of them, may not be automatically assumed, 
one is forced to ask if it may be possible to express the notion of 
causality in a metric-free way. This problem is tackled in the next 
paper in this series,t and a solution is found. 

There are two other problems suggested by  this paper, and they are 
inter-related. The first is the calculation of the distance at which 
metrisation breaks down (to within a given error) from an arbitrary 
point in a locally metrisable non-loaracompact space; the second is the 
construction of a global differential geometric formalism for planted 
structures. 
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